

Углеродный след электроэнергии ГЭС

Углеродный след электроэнергии ГЭС на порядки ниже значений для тепловых электростанций

Углеродный след бореальных водохранилищ ниже, чем в среднем по миру

Результаты замеров выбросов парниковых газов на Иркутской, Братской и Усть-Илимской ГЭС верифицированы на соответствие международным правилам и методикам международным органом по сертификации TUV Austria

Эн+ при участии российских и иностранных учёных провела замеры выбросов и поглощений ПГ от водохранилищ собственных ГЭС и сделала расчеты коэффициентов эмиссии в полном соответствии с международными методиками.

VERIFICATION STATEMENT

В соответствии с процедурами TÜV AUSTRIA Standards & Compliance

исы Кожиной, Москва, 121096, Россия

ГЭС (филиал ООО "ЕвроСибЭнерго-Гидрогенерация") со следующими

Предмет верификации	Сводный отчет о научно- исследовательской работе Института	
	физики атмосферы им. А.М. Обухова	
	Российской академии наук	
	от 18.03.2024г.	
Область верификации	Братская гидроэлектростанция (ГЭС)	
	и Братское водохранилище	
Временные границы	1 января 2022 — 31 декабря 2022	
	1 января 2023 – 31 декабря 2023	
Коэффициент антропогенных		
выбросов парниковых газов (ПГ),	за 2022 год	за 2023 год
гСО-экв./кВт*ч		
Рассчитывается путём деления годовых		
антропогенных выбросов ПГ водохранилища	7,01	7,25
ГЭС на годовой объем отпуска электроэнергии ГЭС		
Неопределенность коэффициента, %	45,5	
Уровень заверения	Обоснованный	
Уровень существенности	5%	

Настоящее заключение содержит дополнительные сведения в Приложении:

Заключение № TASC-V-20240327006

и заверяет коэффициенты выбросов ПГ для указанных выше отчетных периодов

Анализ климатических рисков. Проект TCFD*

В 2021 году Группа систематизировала информацию о своих климатических рисках и возможностях.

- Анализ показал, что климатические риски могут коснуться практически каждого предприятия Группы.
- В ходе работы были проанализированы и обновлены существующие мероприятия по митигации рисков и их последствий.
- Были даны рекомендации по уточнению физических климатических рисков для ГЭС

Гидрологический цикл суши – важнейшая часть климатической системы Земли.

→ климатические изменения оказывают непосредственное влияние на сток рек, а значит и на энергетические показатели на ГЭС.

^{* -} Требования по раскрытию финансовых показателей, связанных с изменением климата, перешло в новые стандарты МФСО

Подход к оценке климатических рисков и возможностей

Идентификация климатических рисков и возможностей в контексте деятельности компании

Определение риск-факторов, обуславливающих возможность реализации климатических рисков и возможностей для предприятий

Качественная оценка рисков и возможностей, определение наиболее значимых рисков для количественной оценки

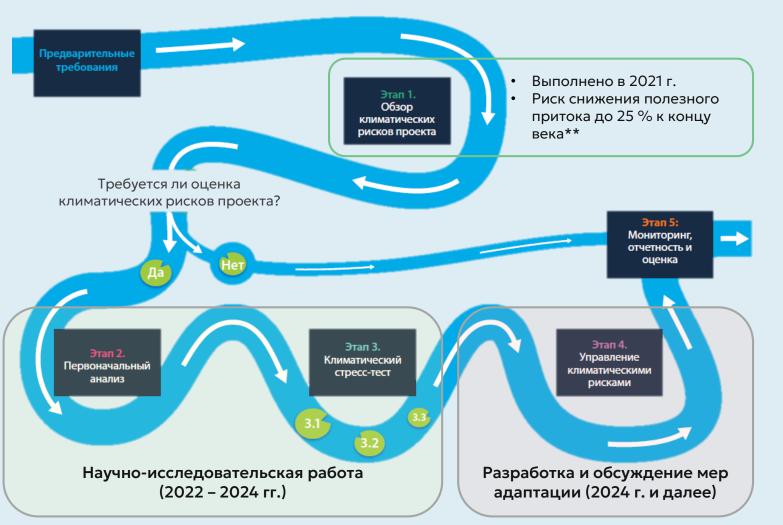
Определение и сбор исходных данных для количественной оценки климатических рисков и возможностей

Осуществление количественной оценки влияния климатических рисков и возможностей

Обработка результатов и планирование мероприятий минимизации рисков/адаптации к рискам

Национальный Альянс по вопросам социальной и экологической ответственности, корпоративного управления и устойчивого развития

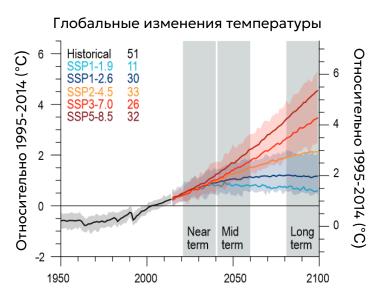
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ СВЯЗАННЫХ С ИЗМЕНЕНИЕМ КЛИМАТА


Январь, 2024 г

По инициативе и под руководством Эн+ в рамках Рабочей Группы по Климатической повестке. Национальный ESG Альянс выпустил методику по оценки рисков для нефинансовых компаний

Подход к управлению климатической устойчивостью ГЭС

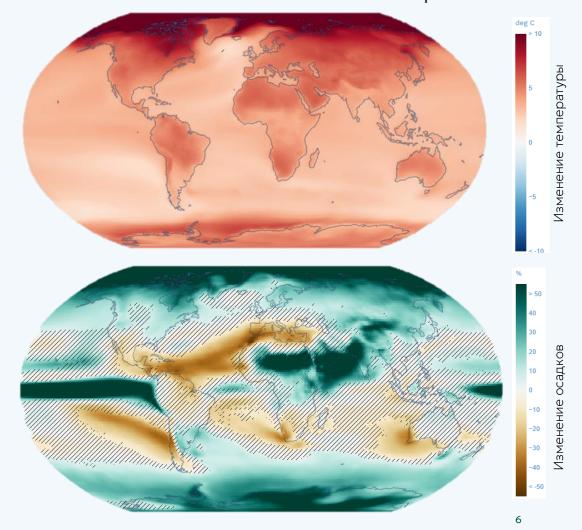
Схема управления климатической устойчивостью в гидроэнергетике*



^{* –} Руководство по климатической устойчивости в гидроэнергетике (ІНА)

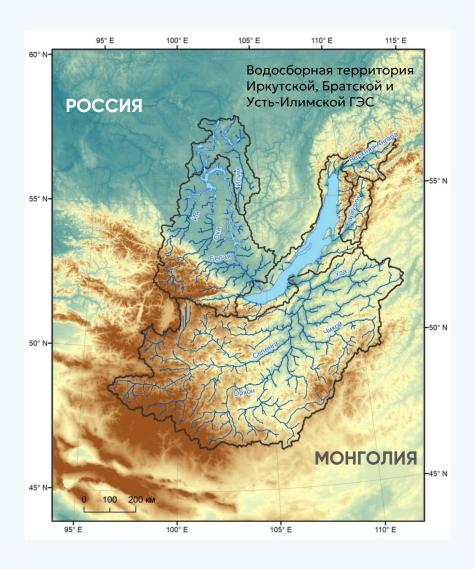
^{** –} Снижение стока реки Селенги в наиболее тяжелом климатическом сценарии (SSP5-8.5)

Климатические сценарии и горизонты планирования


Для целей адаптации к изменениям климата рассматриваются 2 сценария:

- 1. Наиболее вероятный (SSP2-4.5) потепление на 3°С до конца XXI века;
- 2. Стрессовый (SSP5-8.5) потепление на 5° С до конца XXI века.

Рассматриваются 3 горизонта планирования: 2030, 2050 и 2100 годы.


На территории стран СНГ прогнозируется увеличение засушливости климата. Это создает риск сокращения водных ресурсов

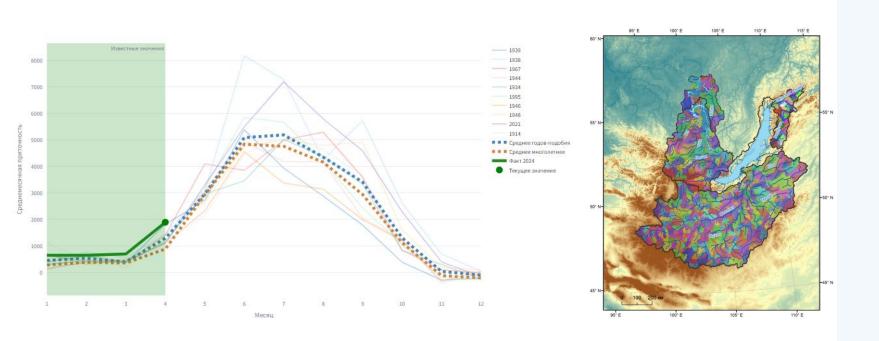
Стрессовый сценарий (SSP5-8.5), 2100 г. Потепление на 5 $^{\circ}\mathrm{C}$ глобально и более 10 $^{\circ}\mathrm{C}$ в Арктике

Оценка рисков в трансграничном контексте

- 40 % площади водосборного бассейна Байкала располагается на территории Монголии.
- Разработанная в рамках проекта Эн+ модель позволяет оценить влияние строительства ГЭС на Селенге и её притоках на водность Байкала и Ангары.
- Управление водными ресурсами должно осуществляться по бассейновому принципу.
- Оценка климатических рисков и разработка мер адаптации ГЭС к изменениям климата должны выполняться для бассейна в целом.
- Это позволит избежать нежелательных эффектов и возможных ущербов, как для экономики, так и для окружающей среды.

Требуется:

• Учитывать практики лучших примеров бассейнового управления (Река Янцзы (Китай), Меконг Дельта (Вьетнам, Лаос), Река Парана (Бразилия, Парагвай, Аргентина), другие)


• Поддерживать разработку мастер планов по управлению целых водосборных территорий

Развивать трансграничное сотрудничество с заинтересованными сторонами

Видение развития управления водными ресурсами

- В соответствии с международными лучшими практиками (Китай, Япония, Корея)
- Совместно с национальными научными и технологическими партнерами
- Цель: Более эффективное управление водными ресурсами и каскадом ГЭС

Создание цифровых двойников водохозяйственных систем, каскадов ГЭС

Создание цифровых двойников бассейнов рек

Создание межправительственных органов управления для трансграничных бассейнов

Прогнозирование притока воды на основе цифровых двойников и искусственного интеллекта